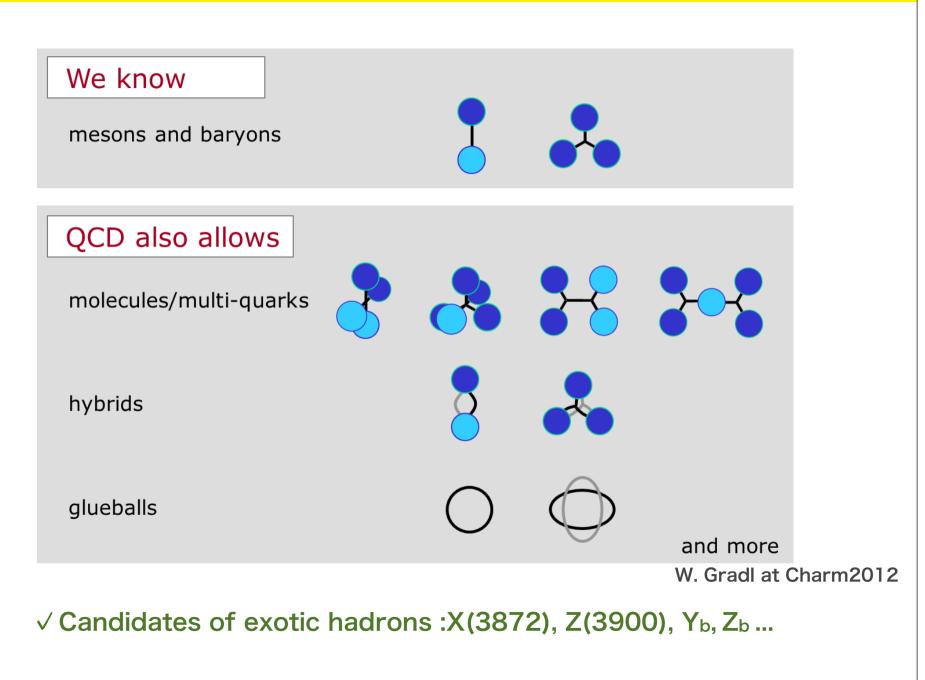
Exotic mesons with hidden bottom near the thresholds

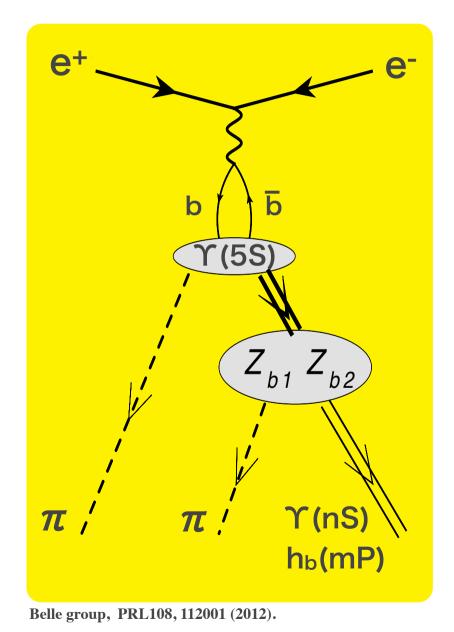

S. Ohkoda^A Y. Yamaguchi^A, S. Yasui^B and A. Hosaka^A ^AResearch Center for Nuclear Physics (RCNP) ^BKEK theory center

Crossover of Hadron and Nuclear Physics at Kyusyu, 9/6/2013

Outline

- Introduction
 - Exotic hadrons
 - Z_b(10610) and Z_b(10650)
- BB molecules with One Boson
 Exchange Potential model (OBEP)
- The relation of spin structures and decay properties of Z_b
- Summary

Exotic hadron


Zb(10610) and Zb(10650)

Decay process

 $\begin{array}{l} \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \Upsilon(\mathsf{n}S) \ \pi \ \pi \\ \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \mathsf{h}_{\mathrm{b}}(\mathsf{m}\mathsf{P})\pi \ \pi \\ \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \mathsf{B}^{*}\overline{\mathsf{B}}^{(*)} \ \pi \ \pi \\ \end{array} \\ \begin{array}{l} \ast \mathsf{n}=1,2,3 \ \mathsf{m}=1,2 \end{array}$

Mass and width

```
\begin{array}{l} \checkmark Z_{b}(10610): Z_{b} \\ M = 10607.4 \pm 2.0 \; \text{MeV} \; {\sim} B\overline{B}^{*} \\ \Gamma = 18.3 \pm 2.4 \; \text{MeV} \\ \checkmark Z_{b}(10650): Z_{b}' \\ M = 10652.2 \pm 1.5 \; \text{MeV} \; {\sim} B^{*}\overline{B}^{*} \\ \Gamma = 11.5 \pm 2.2 \; \text{MeV} \end{array}
```


Properties of Zb

Exotic quantum numbers

 $\checkmark I^{G}(J^{P})=1+(1+)$ $\checkmark Z_{b}$ is the "genuine" exotic state

Exotic twin resonances

 \checkmark The masses of Z_b's are very close to the respective thresholds of BB^{*} and B^{*}B^{*}

Exotic decays

 \checkmark The decay of Υ (5S) \rightarrow Z_b $\pi \rightarrow$ h_b(mP) $\pi \pi$ is not suppressed although it needs spin flip

Z_b is a candidate of B^{*}B^(*) molecule !

BB molecules with OBEP

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

Features of the heavy meson molecule

1. The kinetic term of Hamiltonian is suppressed

✓ Because the reduced mass is larger in heavy mesons
 ✓ two body systems :

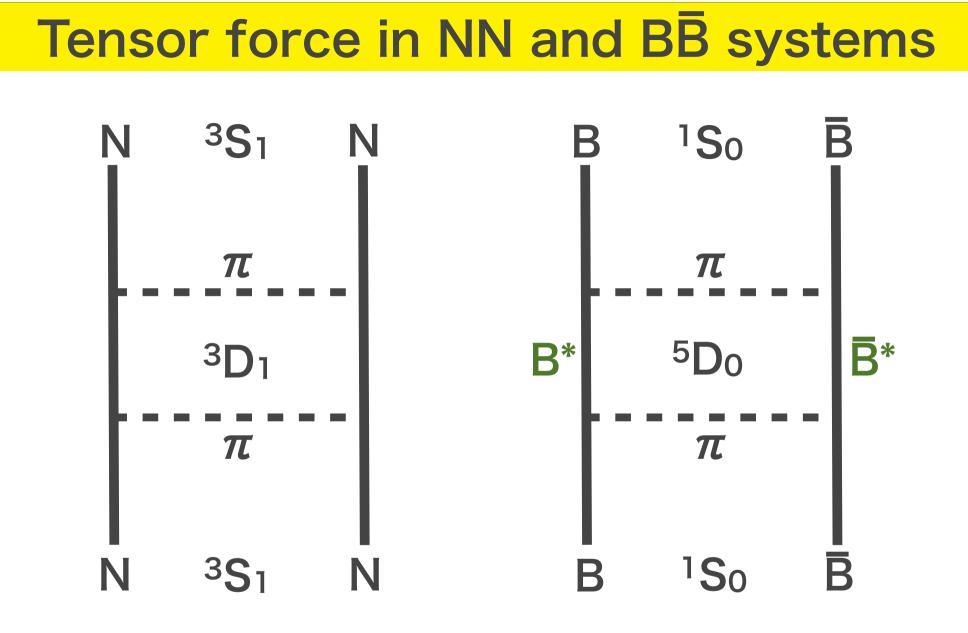
 $\mu_{NN}\simeq 470~{\rm MeV}$ $\mu_{DD*}\simeq 970~{\rm MeV}$ $\mu_{BB*}\simeq 2650~{\rm MeV}$

$$H = \frac{P^2}{2\mu} + V(r)$$

2. B and B* are degenerate thanks to HQS

 \checkmark The interaction of the heavy quark spin is suppressed in heavy quark sector

 \checkmark The effects of channel-couplings becomes lager


✓ Mass splittings:

$$m_{K^*} - m_K \simeq 400$$
 MeV
 $m_{D^*} - m_D \simeq 140$ MeV

100

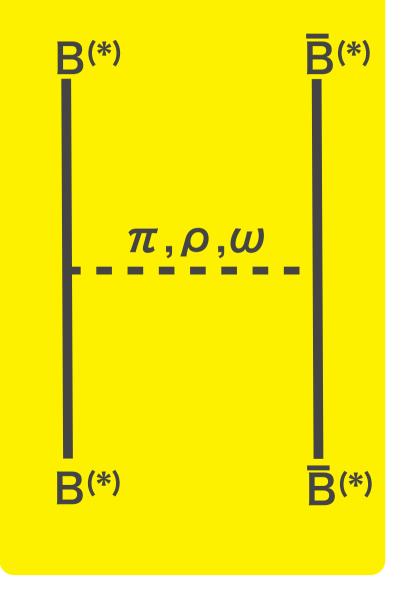
 $m_{B^*}-m_B\simeq 45~$ MeV

the tensor interaction

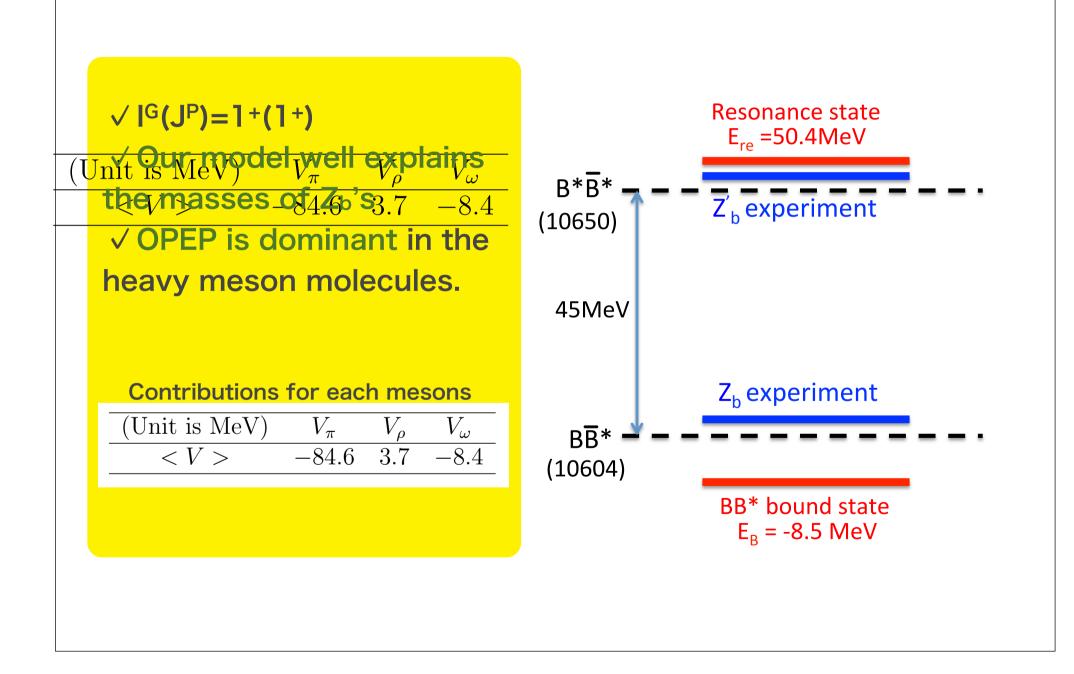
 \checkmark S-D wave mixing causes \checkmark the mass degeneracy causes the tensor interaction

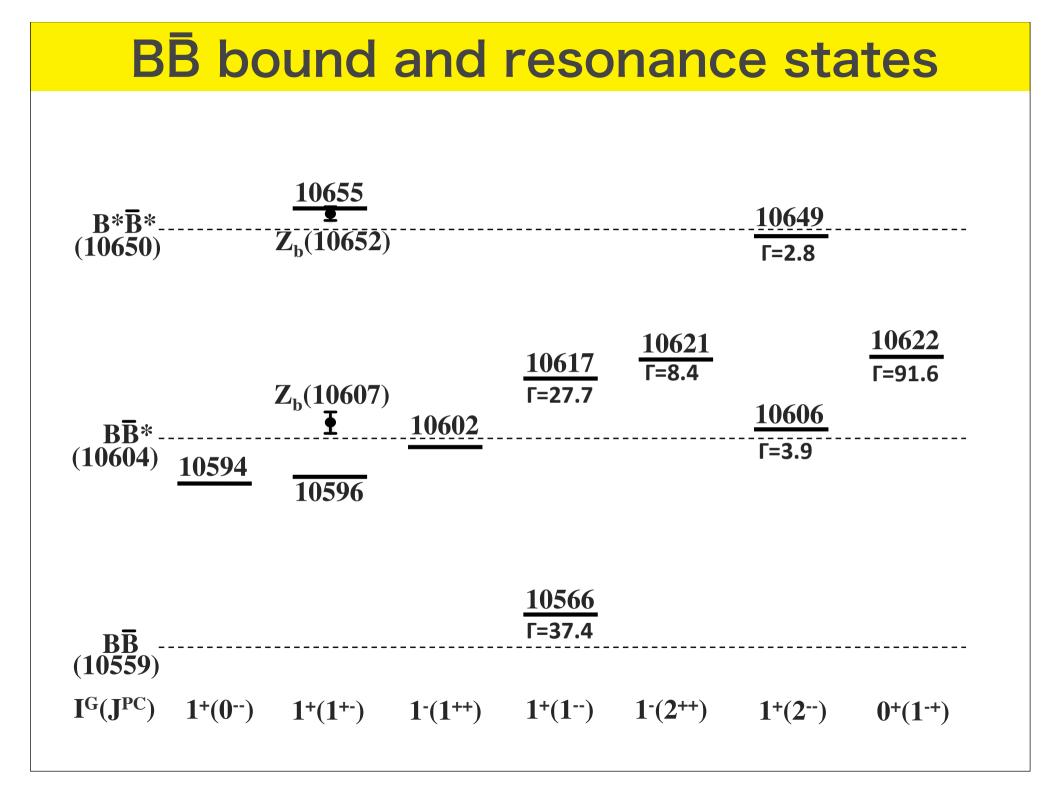
Potential model

✓ Effective Lagrangians


 $\begin{aligned} \mathcal{L}_{\pi HH} &= g \operatorname{tr} \bar{H}_{a} H_{b} \gamma_{\nu} \gamma_{5} A_{ba}^{\nu} \\ \mathcal{L}_{\nu HH} &= -i\beta \operatorname{tr} \bar{H}_{a} H_{b} \upsilon^{\mu} (\rho_{\mu})_{ba} \\ &+ i\lambda \operatorname{tr} \bar{H}_{a} H_{b} \sigma_{\mu\nu} F_{\mu\nu} (\rho)_{ba} \end{aligned}$

\checkmark Potential for $Z_{\rm b}$


Components : $\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})({}^{3}S_1), \frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})({}^{3}D_1),$ $B^*\bar{B}^*({}^{3}S_1), B^*\bar{B}^*({}^{3}D_1)$


Potential :

$$V_{1^{+-}}^{\pi} = \begin{pmatrix} V_{\rm C} & -\sqrt{2}V_{\rm T} & -2V_{\rm C} & -\sqrt{2}V_{\rm T} \\ -\sqrt{2}V_{\rm T} & V_{\rm C} + V_{\rm T} & -\sqrt{2}V_{\rm T} & -2V_{\rm C} + V_{\rm T} \\ -2V_{\rm C} & -\sqrt{2}V_{\rm T} & V_{\rm C} & -\sqrt{2}V_{\rm T} \\ -\sqrt{2}V_{\rm T} & -2V_{\rm C} + V_{\rm T} & -\sqrt{2}V_{\rm T} & V_{\rm C} + V_{\rm T} \end{pmatrix},$$



Results

Decays of BB states

Relations of spin structures and decay properties of Z_b

S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys.Rev. D86, 117502 (2012).

Light spin complex

✓ In the heavy quark limit, new conserved quantity appear —— light spin complex

- $S_{\mbox{\tiny I}}$: Light spin complex
- J : Total angular momentum
- S_H : Heavy quark spin

 \checkmark We can write the wave function of heavy hadrons as the direct product of SH \otimes SI

	JPC		S н 🛞 Sı		bb(^{2S+1} LJ)
Υ:	1	:	1н ⊗ Оі	1	<mark>bb(³S</mark> 1)
h ₀ :	1+-	:	0н 🛞 1т	1	b b(¹ P ₁)
X bJ :	1++	:	(1н ⊗ 1ı)յ	1	b <mark>b(</mark> 3PJ)

The spin structure of Zb

 \checkmark The spin structures of $Z_{\rm b}{}^{\rm \prime}{}^{\rm s}$ are given as

	Sн 🛞 Sı	Component
Zb	$\frac{1}{\sqrt{2}}(0_{H}^{-}\otimes 1_{l}^{-}) + \frac{1}{\sqrt{2}}(1_{H}^{-}\otimes 0_{l}^{-})$	$\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})({}^3S_1)$
Z _b '	$\frac{1}{\sqrt{2}}(0_{H}^{-}\otimes 1_{l}^{-}) - \frac{1}{\sqrt{2}}(1_{H}^{-}\otimes 0_{l}^{-})$	$B^*\bar{B}^*(^3S_1)$

✓ Z_b is a mixture state of O_H and 1_H ✓ (O_H \otimes 1_l) decays to h_b π , $\eta_{\text{b}}\gamma$, ... ✓ (1_H \otimes O_l) decays to $\Upsilon \pi$, $\chi_{\text{bJ}}\gamma$, ...

$\mathsf{Z}_{\mathsf{b}} \xrightarrow{} \chi_{\mathsf{b}} \gamma$

$$\sqrt[]{ \chi_{b0} + \gamma (P-wave) } |_{\chi_{b0}\gamma(M1)} > |_{J=1} = (1^{-}_{H} \otimes 1^{-}_{l})|_{J=0} \otimes (0^{+}_{H} \otimes 1^{+}_{l}) \\ = \frac{1}{3}(1^{-}_{H} \otimes 0^{-}_{l}) - \frac{1}{\sqrt{3}}(1^{-}_{H} \otimes 1^{-}_{l})|_{J=1} + \frac{\sqrt{5}}{3}(1^{-}_{H} \otimes 2^{-}_{l})|_{J=1} \\ \sqrt[]{ \chi_{b1} + \gamma (P-wave) } |_{\chi_{b1}\gamma(M1)} > |_{J=1} = -\frac{1}{\sqrt{3}}(1^{-}_{H} \otimes 0^{-}_{l}) + \frac{1}{2}(1^{-}_{H} \otimes 1^{-}_{l})|_{J=1} + \frac{15}{6}(1^{-}_{H} \otimes 2^{-}_{l})|_{J=1} \\ \sqrt[]{ \chi_{b2} + \gamma (P-wave) } |_{\chi_{b2}\gamma(M1)} > |_{J=1} = -\frac{\sqrt{5}}{3}(1^{-}_{H} \otimes 0^{-}_{l}) + \frac{\sqrt{15}}{6}(1^{-}_{H} \otimes 1^{-}_{l})|_{J=1} + \frac{1}{6}(1^{-}_{H} \otimes 2^{-}_{l})|_{J=1} \\ \Gamma(Z^{0}_{b} \to \chi_{b0}\gamma) : \Gamma(Z^{0}_{b} \to \chi_{b1}\gamma) : \Gamma(Z^{0}_{b} \to \chi_{b2}\gamma) \\ 1 = -\frac{\sqrt{5}}{3} = -\frac{\sqrt{5}}$$

 \checkmark This ratio is testable with experiment

Summary

- We studied the B^(*) B
 ^(*) bound and resonant states
- The potential model suggests Z_b's have molecular type of structure and predicts a number of exotic mesons
- The pion interaction is dominant in the system of the heavy meson molecule
- Analyzing the spin structure gives useful information of the decay properties