Baryonium in Confining Gauge Theories

Masafumi Ishihara (Kyushu U.) K.Ghoroku(Fukuoka Inst. Tech), M.I., A. Nakamura(Kagoshima U.) and F.Toyoda (Kinki U.) arXiv:0809.1137[hep-th]

- Baryon in gravity dual
- Deformed AdS
- Baryon
- Baryonium

Baryon in gravity dual

A. Brandhuber, et al. JHEP 9807:020,1998

Baryon in SU(N) gauge theory

 \cdots the strings stretched between the boundary of the AdS_5 and the D5-brane wrapped on the S_5

E. Witten ('98)

In the type IIB string theory, there is a self dual field strength G_5 and there are N units of flux on the S^5

$$\int_{S^5} \frac{G_5}{2\pi} = N$$

On the D5-brane, there is a U(1) gauge field A which couples to G_5 as

$$\int_{R \times S^5} A \wedge \frac{G_5}{2\pi}$$

By adding (-1) unit of charge to each string endpoint, the total charge in S^5 vanishes.

deformed AdS

We consider the deformed AdS background by including the R-R scalar χ

$$S = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{g} \left(R - \frac{1}{2} (\partial\phi)^2 + \frac{1}{2} e^{2\phi} (\partial\chi)^2 - \frac{1}{4\cdot 5!} F_5^2 \right)$$

the ansatz for supersymmetry: $\chi = -e^{\phi} + \chi_0$ (A. Kehagius and K. Sfetsos ('99)) The solution is given as follows.

$$ds^{2} = e^{\frac{\phi}{2}} \left(\frac{r^{2}}{R^{2}} (-dt^{2} + (dx^{i})^{2}) + \frac{R^{2}}{r^{2}} dr^{2} + R^{2} d\Omega_{5}^{2} \right)$$
$$e^{\phi} = 1 + \frac{q}{r^{4}} \quad q \equiv \frac{\chi_{0}R}{4} \quad R = (4\pi g_{s} \alpha'^{2} N)^{1/4}$$

 $q \cdots$ VEV of gauge field condensate $\langle F^{\mu\nu}F_{\mu\nu}\rangle$ (H. Liu and A.A. Tseytlin('99))

The dual gauge theory of this background is in the confinement phase.

The $q\bar{q}$ -potential is given by the energy of the U-shaped string.

The U-shaped configuration $\mathbf{X}_{||} = (\sigma, 0, 0), \quad \Omega_5 = \text{constant}$

D5-brane action in this deformed $AdS_5 \times S^5$ background is

$$S = -T_5 \int d^6 \xi \ e^{-\Phi} \sqrt{-\det(g+F)} + T_5 \int A_{(1)} \wedge G_{(5)} \ ,$$

where, G_5 is self-dual Ramond-Ramond field strength

$$G_{(5)} \equiv dC_{(4)} = 4R^4 \left(\mathsf{vol}(S^5) d\theta_1 \wedge \ldots \wedge d\theta_5 - \frac{r^3}{R^8} dt \wedge \ldots \wedge dx_3 \wedge dr \right)$$

where $\operatorname{vol}(S^5) \equiv \sin^4 \theta_1 \operatorname{vol}(S^4) \equiv \sin^4 \theta_1 \sin^3 \theta_2 \sin^2 \theta_3 \sin \theta_4$

and $F_{(2)} = dA_{(1)}$ is the U(1) worldvolume field strength on the D5-brane.

Baryon

We set the world volume coordinates of D5-brane as $\xi^a = (t, \theta, \theta_2, \dots, \theta_5)$. r, and A_t depend only on θ . (C.G.Callan, et al. ('99) Y. Imamura ('99) M.I and K. Ghoroku ('08)) Then, the embedded configuration of the D5 brane is

$$S = T_5 \Omega_4 R^4 \int dt d\theta \sin^4 \theta (-\sqrt{e^{\Phi} (r^2 + r'^2) - F_{\theta t}^2} + 4A_t)$$

where, $\Omega_4 = 8\pi^2/3$ is the volume of the unit four sphere. We define the dimensionless displacement as $D = \frac{1}{T_5\Omega_4 R^4} \frac{\delta S}{\delta F_{t\theta}}$ Then, the gauge field equation of motion and its solution are given.

$$\partial_{\theta} D = -4\sin^4 \theta$$

$$D \equiv D(\nu, \theta) = \left[\frac{3}{2}(\nu\pi - \theta) + \frac{3}{2}\sin\theta\cos\theta + \sin^3\theta\cos\theta\right]$$

We eliminate the gauge filed in favor of D.

$$U_{D5} = \frac{N}{3\pi^2 \alpha'} \int d\theta \ e^{\Phi/2} f \sqrt{r^2 + r'^2} \sqrt{V_{\nu}(\theta)}$$
$$V_{\nu}(\theta) = D(\nu, \theta)^2 + \sin^8 \theta$$

where we used $T_5\Omega_4 R^4 = N/(3\pi^2 \alpha')$. Then, we get the equation of motion

$$\partial_{\theta} \left(\frac{r'}{\sqrt{r^2 + (r')^2}} \sqrt{V_v(\theta)} \right) - \frac{1 - q/r^4}{1 + q/r^4} \frac{r}{\sqrt{r^2 + (r')^2}} \sqrt{V_v(\theta)} = 0$$

The left hand side shows the solutions for q = 2.8 and $\nu = 0$ The right hand side shows the solutions for $\nu = 0.2$

These solutions have cusps. two cusps for $\nu \neq 0$ at $\theta = \pi$ and $\theta = 0$ one cusp for $\nu = 0$ at $\theta = \pi$ For simplicity, we consider the case of $\nu = 0$ in this section. The D5-brane configuration is singular at $r(\theta = \pi)$ for $\nu = 0$. The flux number at this cusp is given as

$$\frac{\delta S}{\delta F_{t\theta}}|_{\theta=\pi} = \frac{2N}{3\pi}D(\pi) = N \qquad \text{(here we set} 2\pi\alpha' \equiv 1)$$

Then, this singularity is canceled out by the boundary term of the N F-strings stretching from this cusp. We can get the baryon.

Baryonium in Confining Gauge Theories – p.11/17

baryonium

We set its world volume coordinates as $\xi^a = (t, \theta, \theta_2, \dots, \theta_5)$. r, A_t and x depend only on θ . (C.G.Callan, et al. ('99) M.I and K. Ghoroku ('08)) Then, the embedded configuration of the D5 brane is

$$S = T_5 \Omega_4 R^4 \int dt d\theta \sin^4 \theta \left(-\sqrt{e^{\Phi}(r^2 + r'^2 + (r/R)x'^2) - F_{\theta t}^2} + 4A_t\right)$$

We eliminate the gauge filed in favor of D.

$$U_{D5} = \frac{N}{3\pi^{2}\alpha'} \int d\theta \ e^{\Phi/2} f \sqrt{r^{2} + r'^{2} + (r/R)^{4} x'^{2}} \sqrt{V_{\nu}(\theta)}$$
$$V_{\nu}(\theta) = D(\nu, \theta)^{2} + \sin^{8} \theta$$

where we used $T_5\Omega_4 R^4 = N/(3\pi^2 \alpha')$.

The typical $D5/\overline{D5}$ solution for $\nu = 0.5$.

Baryonium in Confining Gauge Theories – p.13/17

There are two cusps at $\theta = \pi$. The flux numbers at cusps are given as

$$\frac{\delta S}{\delta F_{t\theta}} \bigg|_{\theta=\pi} = \frac{2N}{3\pi} |D(\nu,\pi)| = N - k \quad (k \equiv N\nu)$$

We cannot decide the sign of D because U_{D5} contains D in the squared form D^2 .

However, in order to preserve the flux, D should have opposite sign at the two cusps as

$$\pm \frac{\delta S}{\delta F_{t\theta}}|_{\theta=\pi} = \frac{2N}{3\pi} D(\nu, \pi, x^{\pm}) = \pm (N-k)$$

where, $x^{\pm} = \pm x(\theta = \pi)$

Then, this solution can be interpreted as the $D5/\overline{D5}$ configuration.

(N-k) F-strings must be attached at both cusps but with opposite orientation to cancel out the singularity at the two cusps. Such a state forms the (N-k) quarks and (N-k) anti-quarks bound state.

left: the $U_{D5} - L$ relation for h=-1 ($L \equiv x^+ - x^-$)

The energy of vertex part of a baryonium (U_{D5}) has a minimum at finite $L = L_*$. When we can set the parameters to satisfy the inequality

$$L_*^2/R^2 > \frac{1}{2\pi\alpha'}$$

The baryonium configuration is stable against the tachyon which would

appear as strings connecting between D5 and anti-D5 branes.

Baryonium in Confining Gauge Theories – p.16/17

Summary and future work

- We find a baryonium solution by solving the equation of motion for the D5-brane action.
- Since the equation of D5 action contains the displacement flux operator D in the squared form D^2 , the $D5/\overline{D5}$ bound state is obtained from the D5-brane action.
- There is a minimum of U_{D5} at finite $L = L_*$. Then, D5 and $\overline{D5}$ are separated enough not to be destabilized by the tachyon. Then, the baryonium state found here would be stable.
- As for the total mass of the baryonium, we must add F-strings at the cusps of D5-brane. The detail of the analyses will given in the future.