Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

KOHTARHO. MIURA

YITP

12/26(Fri), 2008, Talk in Kyusyu Univ.
KOHTARHO. MIURA

Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram
Introduction (5 min.)
Confinement and Deconfinement (10 min.)
Chiral Phase Transition (10 min.)
Recent Developments (20 min)
Summary and Future Developments

Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

Lattice MC. SC-LQCD Models
Table of Contents

1. **Introduction (5 min.)**
2. **Confinement and Deconfinement (10 min.)**
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop
3. **Chiral Phase Transition (10 min.)**
 - $1/g^2$ & $1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition
4. **Recent Developments (20 min)**
 - Phase Diagram
 - Viscosity
5. **Summary and Future Developments**
Table of Contents

1 Introduction (5 min.)

2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop

3 Chiral Phase Transition (10 min.)
 - $1/g^2$ & $1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

4 Recent Developments (20 min)
 - Phase Diagram
 - Viscosity

5 Summary and Future Developments
Lattice QCD Action (Pure Glue)

- **Plaquette**

\[U_{\nu\rho,x} \sim e^{ia^2gG_{\nu\rho,x}} \]

- **Action for Pure Glue**

\[
S_G = \sum_{\nu\rho,x} \frac{2N_c}{g^2} \left[1 - \frac{\text{tr}_c}{2N_c} \left[U_{\nu\rho,x} + U_{\nu\rho,x}^\dagger \right] \right] \to \frac{1}{4} \int d^4x \ G_{\nu\rho,x} G_{x}^{\nu\rho}
\] \hspace{1cm} (1)
Lattice QCD Action (Pure Glue)

- **Plaquette**

 \[U_{\nu\rho,x} \sim e^{ia^2 g G_{\nu\rho,x}} \]

- **Action for Pure Glue**

 \[
 S_G = \sum_{\nu\rho,x} \frac{2N_c}{g^2} \left[1 - \frac{\text{tr}_c}{2N_c} [U_{\nu\rho,x} + U_{\nu\rho,x}^\dagger] \right] \rightarrow \frac{1}{4} \int d^4x \ G_{\nu\rho,x} G_{x}^{\nu\rho} \quad (1)
 \]
Introduction (5 min.)

Confinement and Deconfinement (10 min.)

Chiral Phase Transition (10 min.)

Recent Developments (20 min)

Summary and Future Developments

Lattice QCD Action (Pure Glue)

- **Plaquette**
 \[
 U_{\nu\rho,x} \sim e^{ia^2gG_{\nu\rho,x}}
 \]

- **Action for Pure Glue**
 \[
 S_G = \sum_{\nu_{\rho,x}} \frac{2N_c}{g^2} \left[1 - \frac{\text{tr}_c}{2N_c} \left[U_{\nu\rho,x} + U_{\nu\rho,x}^\dagger \right] \right] \rightarrow \frac{1}{4} \int d^4x \ G_{\nu\rho,x} G^{\nu\rho}_x
 \]

KOHTARHO. MIURA

Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram
Wilson Loop (Wilson (1974))

\[\langle W[U] \rangle \propto \int D U \ W[U] \ \exp[-S_{G[U]}] \simeq \exp[-N_{\tau} \mathcal{V}] \]

\[\mathcal{V} = L \log[N_c g^2] \tag{2} \]
Wilson Loop (Wilson (1974))

\[\langle W[U] \rangle \propto \int DU \ W[U] \ \exp[-S_G[U_{\square}]] \simeq \exp[-N_\tau \mathcal{V}] \]

\[\mathcal{V} = L \log[N_c g^2] \]
Introduction (5 min.)
Confinement and Deconfinement (10 min.)
Chiral Phase Transition (10 min.)
Recent Developments (20 min)
Summary and Future Developments

Lattice QCD Action (Pure Glue)
Wilson Loop
Polyakov Loop

Wilson Loop (Wilson (1974))

\[\langle W[U] \rangle \propto \int DU \, W[U] \, \exp[-S_G[U\Box]] \simeq \exp[-N_\tau \mathcal{V}] \]

\[\mathcal{V} = L \log[N_c g^2] \]
Wilson Loop (Wilson (1974))

\[
\langle W[U] \rangle \propto \int DU \ W[U] \ \exp[-S_G[U_{\Box}]] \simeq \exp[-N_{\tau} \mathcal{V}]
\]

\[
\mathcal{V} = L \log[N_c g^2]
\]

\[
\int DU \frac{a}{d} = \frac{1}{N_c} \delta^b_a \delta^d_c
\]
String tension

SU(2) String Tension (Munster (1981))

- **Weak coupling leading**
- **Strong coupling leading**

Dots = Lattice MC.

Creutz (1979)

\[
\beta = 2N_c/g^2
\]

12-th order of Strong coupling exp. Munster (1981)

Strong coupling regime would be smoothly connected with the perturbative regime.

Strong coupling expansion was complimentary to the lattice MC, and vice versa.
Potential of Polyakov Loop ($SU(N_c = 3)$)

c.f. PNJL (Fukushima (2003))

$$V_P / T = -2d \ e^{-a\sigma / T} N_c^2 \bar{l}_P l_P - \log \left[1 - 6\bar{l}_P l_P - 3(\bar{l}_P l_P)^2 + 4(l_P^3 + \bar{l}_P^3) \right]$$ (3)
<table>
<thead>
<tr>
<th>Section</th>
<th>Duration</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction (5 min.)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Confinement and Deconfinement (10 min.)</td>
<td>Lattice QCD Action (Pure Glue), Wilson Loop, Polyakov Loop</td>
</tr>
<tr>
<td>3</td>
<td>Chiral Phase Transition (10 min.)</td>
<td>$1/g^2$ & $1/d$ expansion, Hadron Mass Spectrum, Chiral Phase Transition</td>
</tr>
<tr>
<td>4</td>
<td>Recent Developments (20 min)</td>
<td>Phase Diagram, Viscosity</td>
</tr>
<tr>
<td>5</td>
<td>Summary and Future Developments</td>
<td></td>
</tr>
</tbody>
</table>
Pioneering Works: Kawamoto, Smit (’81), Kluberg-Stern, Moreo, Napoly, Peterson (’81)

1/d expansion: Kluberg-Stern, Moreo, Peterson (’83)

\[
Z_{\text{LQCD}} = \int x, \bar{x}, U \exp[-S_F - S_G]
\]

\[
\exp[-S_{\text{eff}}[\sum_\nu M_x M_{x+\hat{p}}, \sum_\nu \bar{B}_x B_{x+\hat{p}}, \sum_{\nu<\rho} M.M.M.M.M., \text{etc}]]
\]

\[
\mathcal{O}(g^0, d^0) \quad \mathcal{O}(g^0, d^{-1/2}) \quad \mathcal{O}(g^{-2}, d^0)
\]
Staggered Hadrons: Kluberg-Stern, Moreo, Peterson (’83), Golterman, Smit (’85)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∞ [1]</td>
<td>3</td>
<td>3</td>
<td>3.15</td>
</tr>
<tr>
<td>m_π</td>
<td>input (780)</td>
<td>1010</td>
<td>1120</td>
<td>730 ± 90</td>
</tr>
<tr>
<td>m_ρ</td>
<td>input (750)</td>
<td>1160</td>
<td>970</td>
<td>1190 ± 90</td>
</tr>
<tr>
<td>$M_2(A_1)$</td>
<td>1010</td>
<td>1120</td>
<td>660 ± 50</td>
<td></td>
</tr>
<tr>
<td>$M_3(S)$</td>
<td>1160</td>
<td>970</td>
<td>730 ± 90</td>
<td></td>
</tr>
<tr>
<td>m_B</td>
<td>1300</td>
<td>1120</td>
<td>970</td>
<td>920 ± 100</td>
</tr>
<tr>
<td>f_π</td>
<td>190</td>
<td>177</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>m_η</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>a^{-1}</td>
<td>440</td>
<td>1500</td>
<td>input (730)</td>
<td>95</td>
</tr>
</tbody>
</table>

Kluberg-Stern-Morel-Petersson (1983)

Strong Coupling Expansion is consistent with the lattice MC and experiments!!
Polyakov Gauge

\[U_{0,x} = \text{diag}\{e^{i\theta_1 x T}, e^{i\theta_2 x T}, e^{i\theta_3 x T}\} \]

Lattice Chemical Potential Karsch, Hasenfratz ('83)

\[U_0 \rightarrow e^{\mu} U_0 \quad (\text{c.f. } iA_0 \rightarrow iA_0 + \mu) \]
T and μ

- **Polyakov Gauge**

 \[U_{0,x} = \text{diag}\{e^{i\theta^1_x T}, e^{i\theta^2_x T}, e^{i\theta^3_x T}\} \]

- **Lattice Chemical Potential** Karsch, Hasenfratz ('83)

 \[U_0 \rightarrow e^{\mu} U_0 , \quad (c.f. \ iA_0 \rightarrow iA_0 + \mu) \quad (4) \]
Phase Diagram

Damgaard-Kawamoto-Shigemoto (1986)

- **V_{eff}**
- \(\tilde{\beta} = 6/15 \)
- \(\tilde{\beta} = 1/15 \)
- \(\tilde{\beta} = 3/4 \)
- \(\tilde{\beta} = 1 \)
- \(\tilde{\beta} = 6/5 \)

Damgaard-Hochberg-Kawamoto (1985)

- **\(V_{eff} \)**
- \(\mu = 1.00 \)
- \(\mu = 0.75 \)
- \(\mu = 0.65 \)
- \(\mu = 0.50 \)

1100 (MeV) 2nd order

290 (MeV) 1st order
Some Comments

- **Effective Potential**
 Damgaard, Kawamoto, Shigemoto ('86), Faldt, Petersson ('86)

 \[
 V_{\text{eff}} = \frac{d}{4N_c} \sigma^2 - T \log \left[\frac{\sinh[(N_c + 1)E/T]}{\sinh[E/T]} + 2 \cosh[N_c\mu/T] \right]
 \]

 (5)

- **Phase Diagrams**
 - Bilic, Karsch, Redlich (1992)
 - Bilic, Demeterfi, Peterson (1992)
 - Bilic, Cleymens (1995)

- **Related Models**
 - Ilgenfritz, Kripfganz (1985)
 - Gocsh, Ogilve (1986)

- **Monomer-Dimer-Polymer**
 - Dagotto, Moreo, Wolf (1986, 87)
 - Karsch, Mutter (1990)
Table of Contents

1 Introduction (5 min.)

2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop

3 Chiral Phase Transition (10 min.)
 - $1/g^2$ & $1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

4 Recent Developments (20 min)
 - Phase Diagram
 - Viscosity

5 Summary and Future Developments
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ‘04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at $(m_0, \mu) = (0, 0)$. m_0 favors σ, μ favors Δ. Saturation effect.

Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida ’04).

The diquark has not been realized in SU($N_c = 3$). (c.f. Diquarks in SU(3): Azcoiti et al. (2003))
Strong Coupling Limit SU(3)

Fukushima (’04), Nishida (’04), Kawamoto-Miura-Ohnishi-Ohnuma (’05)

1st and 2nd transitions with tri-critical point appear!!
Fukushima ('04), Nishida ('04), Kawamoto-Miura-Ohnishi-Ohnuma ('05)

1st and 2nd transitions with tri-critical point appear!!
Energy scale modifications due to $1/g^2$

- **A Plaquette Effect and MFA**

 A Diagram with $1/g^2$

 \[
 \chi e^{-\mu U_0^\dagger} \chi \\
 \chi e^{\mu U_0} \chi
 \]

 Mean Fields

 \[
 \varphi_\tau \sim \langle e^{\mu} \bar{\chi} U_0 \chi - e^{-\mu} (h.c.) \rangle \\
 \phi_\tau \sim \langle e^{\mu} \bar{\chi} U_0 \chi + e^{-\mu} (h.c.) \rangle
 \]

 Physical Meaning

 Quark mass (m_q) suppression

 Quark density (μ suppression)

- **Energy scale**

 \[
 T \quad \mu \quad m_q
 \]

 1/g^2 effects !!
Phase Diagram Evolution with $\beta = 2N_c/g^2$

Miura-Kawamoto-Ohnishi, Preliminary

- $\mu T_{0}/T_{\mu=0}^{\text{cri}}$
 - > 2.0 (real world)
 - 0.33 Fukushima ('04)
 - $Nishida ('04)$
 - ~ 1.0 Present ($\beta \sim 3.2$)
 - ≥ 1.0 MC (Forcrand-Philipsen, Fodor-Katz, ...)

- Large Suppression
- Small Correction
- New Structure!!
KOHTARHO. MIURA
Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

Consistency check

\[
T_c(1st) \quad T_c(2nd) \quad T_c(MC)
\]

\(N_c = 3\)

Forcrand (private comm.)
Kennedy et.al (’85)

\((8^3 \times 2)\)

0.025 0.05 ∞
Phase Diagram Evolution with $\beta = 2N_c/g^2$

\[\beta \geq \beta_c = \frac{2N_c^2}{d} \mu_c^{(1st)} \]

\(C_2 < 0 \)
\(C_2 \geq 0 \)
\(C_2 > 0 \)

Fukushima ('04)
Nishida ('04)

Miura Ohnishi (Present)
Shear Viscosity based on SCExp. in Pure Glue

\[\eta \propto T \]

<table>
<thead>
<tr>
<th>Section</th>
<th>Duration</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5 min.</td>
<td></td>
</tr>
<tr>
<td>Confinement and Deconfinement</td>
<td>10 min.</td>
<td>Lattice QCD Action (Pure Glue), Wilson Loop, Polyakov Loop</td>
</tr>
<tr>
<td>Chiral Phase Transition</td>
<td>10 min.</td>
<td>$1/g^2$ & $1/d$ expansion, Hadron Mass Spectrum, Chiral Phase Transition</td>
</tr>
<tr>
<td>Recent Developments</td>
<td>20 min.</td>
<td>Phase Diagram, Viscosity</td>
</tr>
<tr>
<td>Summary and Future Developments</td>
<td></td>
<td>KOHTARHO. MIURA Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram</td>
</tr>
</tbody>
</table>
Summary

Status

- An instructive guide for the lattice MC. In particular, “Beyond Sign Problem” may be urgently required.
- Idea source for the model buildings.

Recent developments

- Precise structure of the phase diagram at the strong coupling limit (SU(2) and SU(3)).
- The phase diagram evolution with the finite coupling.
- Shear viscosity in pure glue $\eta/s \sim 0.25$.
- Meson mass scalings due to T and μ effects (Miura, Kawamoto Ohnishi ('08)), Banks-Casher relations in SU(2) SC-LQCD at $g \to \infty$ (Fukushima ('08)), Diquark (Azcoiti et al. ('03)) etc.
Summary

Status

- An instructive guide for the lattice MC. In particular, “Beyond Sign Problem” may be urgently required.
- Idea source for the model buildings.

Recent developments

- Precise structure of the phase diagram at the strong coupling limit (SU(2) and SU(3)).
- The phase diagram evolution with the finite coupling.
- Shear viscosity in pure glue $\eta/s \sim 0.25$.
- Meson mass scalings due to T and μ effects (Miura, Kawamoto Ohnishi ('08)), Banks-Casher relations in SU(2) SC-LQCD at $g \to \infty$ (Fukushima ('08)), Diquark (Azcoiti et al. ('03)) etc.
Future Developments

Key Words

- Imaginary chemical potential.
- Comparison with the lattice MC in the scaling region at $\mu = 0$.
- Introducing the SC-LQCD inspired interactions to models.
- More sophisticated formulations for diquarks and Viscosity.
- Finite T glueball.
- Phase diagram for the deconfinement transition.
- The density creation in the chiral broken phase.