Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

KOHTARHO. MIURA

YITP

12/26(Fri), 2008, Talk in Kyusyu Univ.

KOHTARHO. MIURA Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

QCD Phase Diagram

< 17 >

3.0

∃ → < ∃</p>

____ ▶

Introduction (5 min.) Confinement and Deconfinement (10 min. Chiral Phase Transition (10 min. Recent Developments (20 min)

Table of Contents

Introduction (5 min.)

- 2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop
- 3 Chiral Phase Transition (10 min.)
 - $1/g^2 \& 1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

A Recent Developments (20 min)

- Phase Diagram
- Viscosity

Confinement and Deconfinement (10 min.) Chiral Phase Transition (10 min.) Recent Developments (20 min)

Table of Contents

2 Confinement and Deconfinement (10 min.)

- Lattice QCD Action (Pure Glue)
- Wilson Loop
- Polyakov Loop
- - $1/g^2 \& 1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

- Phase Diagram
- Viscosity

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Lattice QCD Action (Pure Glue)

Plaquette

• Action for Pure Glue

$$S_G = \sum_{\nu\rho,x} \frac{2N_c}{g^2} \left[1 - \frac{\operatorname{tr}_c}{2N_c} \left[U_{\nu\rho,x} + U_{\nu\rho,x}^{\dagger} \right] \right] \to \frac{1}{4} \int d^4 x \ G_{\nu\rho,x} G_x^{\nu\rho} \tag{1}$$

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Lattice QCD Action (Pure Glue)

Plaquette

• Action for Pure Glue

$$S_{G} = \sum_{\nu\rho,x} \frac{2N_{c}}{g^{2}} \left[1 - \frac{\mathrm{tr}_{c}}{2N_{c}} \left[U_{\nu\rho,x} + U_{\nu\rho,x}^{\dagger} \right] \right] \rightarrow \frac{1}{4} \int d^{4}x \ G_{\nu\rho,x} G_{x}^{\nu\rho} \tag{1}$$

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Lattice QCD Action (Pure Glue)

Plaquette

• Action for Pure Glue

$$S_{G} = \sum_{\nu\rho,x} \frac{2N_{c}}{g^{2}} \left[1 - \frac{\operatorname{tr}_{c}}{2N_{c}} \left[U_{\nu\rho,x} + U_{\nu\rho,x}^{\dagger} \right] \right] \to \frac{1}{4} \int d^{4}x \ G_{\nu\rho,x} G_{x}^{\nu\rho}$$
(1)

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Wilson Loop (Wilson (1974))

 $\langle \boldsymbol{W}[\boldsymbol{U}] \rangle \propto \int \mathcal{D}\boldsymbol{U} \; \boldsymbol{W}[\boldsymbol{U}] \; \exp\left[-S_{G}[\boldsymbol{U}_{\Box}]\right] \simeq \exp[-N_{\tau}\mathcal{V}]$ $\mathcal{V} = L \log[N_{c}g^{2}]$ (2)

< 回 > < 三 > < 三 >

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Wilson Loop (Wilson (1974))

$$\langle \boldsymbol{W}[\boldsymbol{U}] \rangle \propto \int \mathcal{D}\boldsymbol{U} \; \boldsymbol{W}[\boldsymbol{U}] \; \exp\left[-S_{\boldsymbol{G}}[\boldsymbol{U}_{\Box}]\right] \simeq \exp\left[-N_{\tau}\mathcal{V}\right]$$
$$\mathcal{V} = L \log[N_{c}g^{2}]$$
(2)

(日) (同) (三) (三)

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Wilson Loop (Wilson (1974))

$$\langle \boldsymbol{W}[\boldsymbol{U}] \rangle \propto \int \mathcal{D}\boldsymbol{U} \; \boldsymbol{W}[\boldsymbol{U}] \; \exp\left[-S_{\boldsymbol{G}}[\boldsymbol{U}_{\Box}]\right] \simeq \exp\left[-N_{\tau}\mathcal{V}\right]$$

$$\mathcal{V} = L \log[N_{c}g^{2}]$$

$$(2)$$

(日) (同) (三) (三)

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Wilson Loop (Wilson (1974))

$$\langle \boldsymbol{W}[\boldsymbol{U}] \rangle \propto \int \mathcal{D}\boldsymbol{U} \ \boldsymbol{W}[\boldsymbol{U}] \ \exp\left[-S_{G}[\boldsymbol{U}_{\Box}]\right] \simeq \exp\left[-N_{\tau}\mathcal{V}\right]$$
$$\mathcal{V} = L \log[N_{c}g^{2}]$$
(2)

(日) (同) (三) (三)

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

String tension

Polyakov Loop

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

KOHTARHO. MIURA Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

<ロ> <四> <四> <日> <日> <日</p>

Lattice QCD Action (Pure Glue) Wilson Loop Polyakov Loop

Potential of Polyakov Loop $(SU(N_c = 3))$

SU(2): Polonyi, Szlachanyi (1982), SU(3): Gross, J. Bartholomew, and D. Hochberg (1983)

c.f. PNJL (Fukushima (2003))

$$\mathcal{V}_P/T = -2d \ e^{-a\sigma/T} N_c^2 \bar{l}_P l_P - \log \left[1 - 6\bar{l}_P l_P - 3(\bar{l}_P l_P)^2 + 4(l_P^3 + \bar{l}_P^3) \right]$$
(3)

-

1/g² & 1/d expansion Hadron Mass Spectrum Chiral Phase Transition

Table of Contents

Introduction (5 min.)

- 2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop
- Ohiral Phase Transition (10 min.)
 - $1/g^2 \& 1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

4 Recent Developments (20 min)

- Phase Diagram
- Viscosity

$1/g^2 \& 1/d$ expansion

Pioneering Works: Kawamoto, Smit ('81), Kluberg-Stern, Moreo, Napoly, Peterson('81)

1/d expansion: Kluberg-Stern, Moreo, Peterson('83)

・ 同 ト ・ ヨ ト ・ ヨ

Hadron Mass Spectrum

Staggered Hadrons: Kluberg-Stern, Moreo, Peterson ('83), Golterman, Smit ('85)

	Strong coupling expansion		Monte Carlo [8] Monte Carlo [9]		Physical
g^2N	∞ [1]	3	3	3.15	values
m_{π}	input input (780)		input input (750)	input 730 ± 90	$m_{\pi} = 140$ $m_{\rho} = 780$
$M_2(A_1)$ $M_2(S)$	1010 1160	930 930	1120 970	1190 ± 90 660 ± 50	$m_{A_1} = 1100$ $m_{\delta} = 980$
m _B	1300	1040	{1000 1700	920±100	$m_{\rm N} = 940$ $m_{\Delta} = 1240$
f _π	190	190	177	134	95
mg	8	7	8	7	20
a^{-1}	440	524	1500	input (730)	

Kluberg-Stern-Morel-Petersson(1983)

Strong Coupling Expansion is consistent with the lattice MC and experiments !!

< 6 >

医下口 医下

T and μ

Polyakov Gauge

$$U_{0,\mathbf{x}} = \operatorname{diag}\{e^{i\theta_{\mathbf{x}}^{1}T}, e^{i\theta_{\mathbf{x}}^{2}T}, e^{i\theta_{\mathbf{x}}^{3}T}\}$$

• Lattice Chemical Potential Karsch, Hasenfratz ('83)

$$U_0 \rightarrow e^{\mu} U_0$$
, $(c.f. iA_0 \rightarrow iA_0 + \mu)$ (4)

T and μ

Polyakov Gauge

$$U_{0,\mathbf{x}} = \operatorname{diag}\{e^{i\theta_{\mathbf{x}}^{1}T}, e^{i\theta_{\mathbf{x}}^{2}T}, e^{i\theta_{\mathbf{x}}^{3}T}\}$$

• Lattice Chemical Potential Karsch, Hasenfratz ('83)

$$U_0 \rightarrow e^{\mu} U_0$$
, $(c.f. iA_0 \rightarrow iA_0 + \mu)$ (4)

< □ > < 同 >

-

Phase Diagram

<ロ> <四> <四> <日> <日> <日</p>

Some Comments

• Effective Potential

Damgaard, Kawamoto, Shigemoto ('86), Faldt, Petersson ('86)

$$V_{\rm eff} = \frac{d}{4N_c}\sigma^2 - T \log\left[\frac{\sinh[(N_c+1)E/T]}{\sinh[E/T]} + 2\cosh[N_c\mu/T]\right]$$
(5)

Phase Diagrams

- Bilic,Karsch,Redlich (1992)
- Bilic, Demeterfi, Peterson (1992)
- Bilic, Cleymens (1995)

Related Models

- Ilgenfritz,Kripfganz(1985)
- Gocsh, Ogilve (1986)

Monomer-Dimer-Polymer

- Dagotto, Moreo, Wolf (1986, 87)
- Karsch, Mutter (1990)

Phase Diagram Viscosity

Table of Contents

Introduction (5 min.)

- 2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop
- Chiral Phase Transition (10 min.)
 - $1/g^2 \& 1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition

4 Recent Developments (20 min)

- Phase Diagram
- Viscosity

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey (σ ↔ Δ) symmetry at (m₀, μ) = (0, 0). m₀ favors σ, μ favors Δ. Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< - 10 b

- 本語 医子宫

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey (σ ↔ Δ) symmetry at (m₀, μ) = (0, 0). m₀ favors σ, μ favors Δ. Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< 6 >

- 4 漢字 - 4 漢

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey (σ ↔ Δ) symmetry at (m₀, μ) = (0, 0). m₀ favors σ, μ favors Δ. Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< - 10 b

- 本語 医子宫

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at (m_0, μ) = (0,0). m_0 favors σ , μ favors Δ . Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< - 10 b

- 4 漢字 - 4 漢

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at (m_0, μ) = (0, 0). m_0 favors σ , μ favors Δ . Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< 6 >

A 30 A 4

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at (m_0, μ) = (0, 0). m_0 favors σ , μ favors Δ . Saturation effect.
- Similar phase diagram is obtained in SU(N_c = 3) with isospin chemical pot. (σ ↔ π) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

< - 10 b

化黄酸 化黄酸

Phase Diagram Viscosity

Strong Coupling Limit SU(2)

- Pauli-Gursey ($\sigma \leftrightarrow \Delta$) symmetry at (m_0, μ) = (0, 0). m_0 favors σ , μ favors Δ . Saturation effect.
- Similar phase diagram is obtained in SU($N_c = 3$) with isospin chemical pot. ($\sigma \leftrightarrow \pi$) (Nishida '04).
- The diquark has not been realized in SU($N_c = 3$). (*c.f.* Diquarks in SU(3): Azcoiti et al. (2003))

A 35 A 4

A 1

Phase Diagram Viscosity

Strong Coupling Limit SU(3)

Fukushima('04), Nishida('04), Kawamoto-Miura-Ohnishi-Ohnuma('05)

1st and 2nd transitions with tri-critical point appear!!

Phase Diagram Viscosity

Strong Coupling Limit SU(3)

Fukushima('04), Nishida('04), Kawamoto-Miura-Ohnishi-Ohnuma('05)

1st and 2nd transitions with tri-critical point appear!!

Phase Diagram Viscosity

Energy scale modifications due to $1/g^2$

• A Plaquette Effect and MFA

A Diagram with $1/g^2$	Mean Fields	Physical Meaning
$\chi e^{-\mu}U_0^{\dagger}$	$\varphi_{\tau} \sim \langle \underline{e^{\mu} \bar{\chi} U_0 \chi} - \underline{e^{-\mu} (h.c.)} \rangle$	Quark mass (m_q) suppression
$\overline{\chi} e^{\mu}U_0 X$	$\phi_{\tau} \sim \langle \underline{e^{\mu} \bar{\chi} U_0 \chi} + \underline{e^{-\mu} (h.c.)} \rangle$	Quark density (μ suppression)

Energy scale

A >

3 N

Phase Diagram Viscosity

Phase Diagram Evolution with $\beta = 2N_c/g^2$

Miura-Kawamoto-Ohnishi, Preliminary

< 17 ▶

→ 3 → 4 3

Phase Diagram Viscosity

Consistency check

Phase Diagram Viscosity

Phase Diagram Evolution with $\beta = 2N_c/g^2$

$$\beta \ge \beta_c = \frac{2N_c^2}{d}\mu_c^{(1st)} \tag{6}$$

< 6 >

∃ → < ∃</p>

Phase Diagram Viscosity

Shear Viscosity based on SCExp. in Pure Glue

KOHTARHO. MIURA Status of Strong Coupling Lattice QCD in Exploring QCD Phase Diagram

-

Table of Contents

Introduction (5 min.)

- 2 Confinement and Deconfinement (10 min.)
 - Lattice QCD Action (Pure Glue)
 - Wilson Loop
 - Polyakov Loop
- Chiral Phase Transition (10 min.)
 - $1/g^2 \& 1/d$ expansion
 - Hadron Mass Spectrum
 - Chiral Phase Transition
- 4 Recent Developments (20 min)
 - Phase Diagram
 - Viscosity

Summary and Future Developments

Summary

Status

- An instructive guide for the lattice MC. In particular, "Beyond Sign Problem" may be urgently required.
- Idea source for the model buildings.

Recent developments

- Precise structure of the phase diagram at the strong coupling limit (SU(2) and SU(3)).
- The phase diagram evolution with the finite coupling.
- Shear viscosity in pure glue $\eta/s \sim 0.25$.
- Meson mass scalings due to T and μ effects (Miura,Kawamoto Ohnishi ('08)), Banks-Casher relations in SU(2) SC-LQCD at g → ∞ (Fukushima ('08)),Diquark (Azcoiti et al. ('03))etc.

- 4 同 ト - 4 三 ト - 4 三 ト

Summary

Status

- An instructive guide for the lattice MC. In particular, "Beyond Sign Problem" may be urgently required.
- Idea source for the model buildings.

Recent developments

- Precise structure of the phase diagram at the strong coupling limit (SU(2) and SU(3)).
- The phase diagram evolution with the finite coupling.
- Shear viscosity in pure glue $\eta/s \sim 0.25$.
- Meson mass scalings due to T and μ effects (Miura,Kawamoto Ohnishi ('08)), Banks-Casher relations in SU(2) SC-LQCD at g → ∞ (Fukushima ('08)),Diquark (Azcoiti et al. ('03))etc.

Future Developments

Key Words

- Imaginary chemical potential.
- Comparison with the lattice MC in the scaling region at $\mu = 0$.
- Introducing the SC-LQCD inspired interactions to models.
- More sophisticated formulations for diquarks and Viscosity.
- Finite T glueball.
- Phase diagram for the deconfinement transition.
- The density creation in the chiral broken phase.