Various Faces of Extreme QCD

Kenji Fukushima Yukawa Institute for Theoretical Physics Kyoto University

Extreme QCD – Faces

algori algo

Color Superconductivity, Quark-Gluon Plasma, Color Glass Condensate (Combined with Other Extremes) Strong Magnetic Field, Large N_c , Strong Coupling, etc (With Various Methods) Lattice Simulation, Effective Model (PNJL Model), Gravity Dual etc, etc, etc, etc, ... High µ High T High E

Two "Simplest"s

MARANA MARANA

Simplest Questions

- □ What happens at extreme **high-density**?
- □ What happens at extreme **high-temperature**?
- □ What happens at extreme **high-energy**?

Simplest Answers

- □ Color Superconductivity (*CSC*)
- □ Quark-Gluon Plasma (**QGP**)
- □ Color Glass Condensate (*CGC*)

Extreme QCD !

QCD Paradigms

alleri alleri

Dense Quark Matter

Key Issues

<u>, Allay, Allay, Alla Allay, Allay, Allay, Allay, </u> **Color-Flavor Locked (CFL) Phase** □ Ground state of three-flavor symmetric matter Electric and Color Neutrality Conditions \Box *s* breaks neutrality \rightarrow Fermi surface mismatch $\blacksquare Gapless State \leftrightarrow \forall Unstable$ Quest for the true ground state...??? □ Crystalline CSC, LOFF, meson supercurrent CSC □ Gluonic Phase

Superconductivity

ĦĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĔĬĔŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĨŢĿĸĊĿĸĔĬĬŢĿ

Fermi surface $\mu_q \sim 500 \text{MeV} \leftrightarrow \rho \sim 10\rho_0$ Attractive interaction $3+3 \rightarrow \overline{3}$

Color superconductivity is inevitable. Many possible pairing patterns *Spin Color Flavor*

Strange quark mass ~ $100 \sim 200 \text{MeV}$ Characteristic scale ~ m_s^2/μ_q (~50MeV)

Breaking a pair

Bailin-Love ('84)

Color-Flavor Locked Phase

Order parameter

$$2\left\langle \varepsilon_{ijk}\varepsilon_{\alpha\beta\gamma}\overline{q}_{j\beta}\gamma^{5}q_{k\gamma}^{C}\right\rangle = \left\langle \phi_{\mathrm{L}i\alpha}\right\rangle - \left\langle \phi_{\mathrm{R}i\alpha}\right\rangle$$

Alford-Rajagopal-Wilczek ('99) Schafer-Wilczek ('99) K.F. ('04) Yamamoto *et al.* ('06)

$$\langle \phi_{\mathrm{L}i\alpha} \rangle \quad [\mathrm{SU}_{\mathrm{C}}(3)] \times \mathrm{SU}_{\mathrm{L}}(3) \times \mathrm{U}_{\mathrm{L}}(1) \longrightarrow [\mathrm{SU}_{\mathrm{C}+\mathrm{L}}(3)] \times Z_{\mathrm{L}}(2)$$

$$\langle \phi_{Ri\alpha} \rangle$$
 [SU_C(3)] x SU_R(3) x U_R(1) \longrightarrow [SU_{C+R}(3)] x Z_R(2)

 $[SU_{C}(3)] \times SU_{L}(3) \times SU_{R}(3) \times U_{V}(1) \times U_{A}(1) \longrightarrow SU_{C+L+R}(3) \times Z_{L}(2) \times Z_{R}(2)$

Gauge-invariant order parameter $\sigma \sim \left\langle \overline{\phi}_{L} \phi_{R} \right\rangle \quad H \sim \varepsilon_{ijk} \varepsilon_{\alpha\beta\gamma} \left\langle \phi_{Li\alpha} \phi_{Lj\beta} \phi_{Lk\gamma} \right\rangle$

 $q \leftrightarrow \phi, \quad q \leftrightarrow \phi$ Hadron \leftrightarrow Quark (CFL)

Four-Fermi (NJL) Model

Alexis Alex

NOT useful to estimate the pairing gap itself.

• Gluon part of interaction is in $\Delta(g)$ Pisarski-Rischke ('00)

 $\Delta(g) = 2 \cdot 256\pi^4 \cdot (1/g^5) \,\mu_q \, e^{-3\pi^2/\sqrt{2}g} \quad (2\text{SC}; \Delta \sim 0.1\mu_q \text{ for } g^2/4\pi \sim 1)$

Useful to examine the property of dense quark matter with the pairing gap Δ given.

- Mean-field quark propagator = QCD in the mean-field approx.
- Only relevant interaction near the Fermi surface

Assumptions:

Quasi-particle picture = Non-interacting quarks with Δ Δ (2SC) ~ 50MeV around μ_q ~ 500MeV (c.f. $m_s^2/\mu_q \sim 50$ MeV)

Robust Part (after chiral restoration)

ĦĨŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿŴĿĔĬĬŢĿ

From K.F. ('05)

Condensed Matter Physics of QCD is established. Analogy to ³He e.g.) Zero Sound, Phonon, etc Hands et al. ('04) Fukushima-Iida ('05)

Temperature [MeV]

Toward the True Ground State

ŔŶŗĸĿĸŔŶŗĸĿĸŔŶŗĸĿĸŔŶŗĸĿĸŔŶŗĸĿĸŔŶŗĸĿŔŶŗĔŶŶŗĸĿŔŶŗĸĿŔŶŗĸĿŔŶŗĸĿŔŶŗĸĿŔŶŗĸĿŔŶŗĸĿŔŶŢŗĸĿŔŶŢŗ

(Chromomagnetic) Instability

 $\# m_s^2/\mu_q > \Delta \rightarrow$ Unstable w.r.t. $\Delta(q), A^T, n(q)$

Shovkovy-Huang ('04) Casalbuoni et al. ('04) Fukushima ('05)

Pressure to tear the Cooper pair apart Energy gain by condensation

Multi component = Gluonic Phase

Iida-Fukushima ('06)

Crystalline Color Superconductivity (LOFF)

 $(\partial - igA)\Delta = \partial \left(\Delta e^{-igA \cdot x}\right)$ Giannakis-Ren ('04)

Gorbar-Hashimoto-Miransky ('06) December 2008 at Kyusyu

Larkin-Ovchinnikov ('65) Fulde-Ferrell ('64)

One component gluon condensation == Plane-wave LOFF

Multiple-wave = Crystalline Phase

Alford-Bowers-Rajagopal ('01) Rajagopal-Sharma ('06) Alford *et al.* RMP80:1455 (2008)

History of the Phase Diagram

ALVA, ALVA

Bielefeld Proceedings in 1982

AND AL AND AL AND AL AND AL AND AL AND AND AND AL AND AL AND AL AND AL AND AL AND AL AND

Lattice QCD

Taken from Kogut, Stone, Wyld, Gibbs, Shigemitsu, Shenker, Sinclair (1983)

$$\langle \overline{\psi} \psi \rangle$$
 Chiral Condensate
 $W \sim \exp\left[-f_q / T\right]$ Polyakov Loop

Chiral Restoration occurs simultaneously with Deconfinement !

Long Range Plan in 1983

HERAL HERAL

PHASE DIAGRAM OF NUCLEAR MATTER

Discontinuous Leap?

alle a she a she

PNJL Model

Chiral Condensate

Chiral Condensate

PNJL Phase Diagram

ALLAR, ALLAR

Chiral Susceptibility

Adiabatic (Isentropic) Path

Consistent with the lattice results so far.

As a "Toy" Model

ALEANA ALEAN

Sign Problem

$$\ln Z \sim \ln \prod \det \left(1 + L e^{-(\varepsilon - \mu)/T} \right) \left(1 + L^{+} e^{-(\varepsilon + \mu)/T} \right)$$

$$\sim \int \left(\operatorname{tr} L e^{-(\varepsilon - \mu)/T} + \operatorname{tr} L^{+} e^{-(\varepsilon + \mu)/T} \right)$$

Fukushima-Hidaka ('05)

Complex for general *L* **!**

Imaginary Chemical Potential

 $\int \left(\operatorname{tr} L e^{-(\varepsilon - \mu)/T} + \operatorname{tr} L^{+} e^{-(\varepsilon + \mu)/T} \right)$ $\rightarrow \int e^{-\varepsilon/T} \left(\operatorname{tr} L e^{i\mu/T} + \operatorname{tr} L^{+} e^{-i\mu/T} \right)$ Real number !

> Sakai-Kashiwa-Kouno-Yahiro ('08) December 2008 at Kyusyu

PNJL to CSC ?

<u>ir steach steach steachair steach steach steach steach</u>

There are already some applications of the PNJL model to Color Superconductivity.

Roessner-Ratti-Weise ('06) Blaschke ('08) Abuki et al ('08)

There are some technical difficulties left unsolved, however.

□ How to compute the "color density"?

 \square 2-flavor CSC incompatible with diagonal *L* .

Abuki-Fukushima ('09) under completion

Dense Gluon Matter

-

Color

Density

Color Glass Condensate

Quark Chemical Potential

How is dense color possible? ಸರೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬೆಳೆದ್ದಾರೆ, ಬ $\blacksquare Large quark density \rightarrow CSC \quad Dense when \mu_q > \Lambda_{OCD}$ \Box Quark or baryon # has a conserved U(1) charge. Chromo (Gluo)dynamics \Box Gauge charge is SU(3) without conservation. \Box Color is confined. $\blacksquare Large gluon density \rightarrow Color Glass Condensate$

Parton overlapping resolution ~ $1/Q_s$ $Q_s^2 \sim A^{1/3}$

HERA (ep collider)

aligni aligni

Quantum Evolution of PDFs

As *x* goes smaller than $\sim 10^{-2}$ **gluon** is dominant.

small-x = high energy

Only one energy scale Q_s

Initial Condition for HIC

ARAN MENNING M

Summary

ALPANA ALPANA

Dense Quark Matter

Color Superconductivity

□ What is the true ground state?

Hot Quark (and Gluon) Matter

Quark-Gluon Plasma

□ PNJL model is successful!

Dense (and Hot) Gluon Matter

Color Glass Condensate

□ Initial condition for the heavy-ion collisions.

December 2008 at Kyusyu

Various faces of ...

┐ (̄**へ** ̄) ┌ フゥゥ~

く(ム)ノ